The art of feature engineering

Any intelligent algorithm that is used to learn something from data requires that this data is presented in the most optimal way. The process of transforming the data and extracting the most relevant distinguishing characteristics out of it is called feature engineering. It is arguably the most important step in the data science workflow as even the most intelligent algorithm will not produce satisfactory results if the used data does not capture the most essential properties of the phenomenon under study. There is no clearly-defined formal process for engineering features and consequently this requires a lot of creativity, iterations, domain knowledge, etc.

The goal of this session is to give an overview of the most commonly used approaches, as well as lessons learnt and common pitfalls for different types of data (sensor data, location data, etc.) and problem settings (prediction, profiling, etc.). 

Target audience

The mastercourse is open to any company that is interested in data innovation as an opportunity for its company and activities. For this mastercourse some basic analytic skills (e.g. high level understanding of algebra and interpretation of statistical figures) is a prerequisite.

Further information and registration

Location: Sirris Zwijnaarde

Time: 22/06/2017 from 13:00 until 17:30 


Share this post